منابع مشابه
Highly Reflective Uranium Mirrors for Astrophysics Applications
The reported optical constants of uranium differ from that of vacuum significantly more than other elements do over the range of about 150 to 350 eV. This suggests that uranium could be used to produce high reflectance imaging mirrors for many soft x-ray applications. Elemental uranium is too chemically active to be used as a front surface mirror without protection. We computed the expected ref...
متن کاملManufacturing Low Insertion Loss Fiber-Lens Elements
Throughout the fiber optics industry, one is constantly hearing that without substantial improvements in production efficiency, new markets for fiber optic technology will remain elusive. It is therefore a common goal throughout the fiber optics industry to continually improve production processes. We propose a scalable improvement for a production step found in a wide range of fiber optic comp...
متن کاملLow-loss all-solid photonic bandgap fiber.
We report the fabrication and characterization of a new type all-solid photonic bandgap fiber. By introducing an index depressed layer around the high-index rod in the unit cell of photonic crystal cladding, transmission loss as low as 2 dB/km within the first bandgap is realized for the all-solid photonic bandgap fiber with a bandwidth of over 700 nm. The bend loss experiment shows that the ph...
متن کاملDesign of a Photonic Bandgap Fiber with Optimized Parameters to Achieve Ultra-Low Confinement Loss
In this paper, a novel design of all-solid photonic bandgap fiber with ultra-low confinement loss is proposed. The confinement loss is reduced remarkably by managing the number of rods rings, up-doping level, pitch value, and rods diameters. Moreover, the designed PCF shows ultra-flattened dispersion in L- and U-band. Furthermore, a new design, based on introducing of an extra ring of air h...
متن کاملHighly Nonlinear Dual Core Photonic Crystal Fiber with Low Confinement Loss at 1.55μm Wavelength
A novel design of Dual-Core Photonic Crystal Fiber (DC-PCF) with silica-air microstructures is proposed in this paper. Nonlinearity and confinement loss of DC-PCF are evaluated by using a Full-Vectorial Finite Element Method (FV-FEM) successfully. By optimizing the geometry of three ring DC-PCFs, a high nonlinearity (52w-1km-1) and low confinement loss (0.001dB/km) can be achieved at 1.55μm wav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2010
ISSN: 1094-4087
DOI: 10.1364/oe.18.012017